隨著信息技術(shù)的發(fā)展,圖像傳感器越來越多的應(yīng)用在科學(xué)研究和生產(chǎn)生活中,目前使用的主要是CCD圖像傳感器和CMOS圖像傳感器。其中以CCD為采集數(shù)據(jù)源的圖像采集技術(shù)取得了長足的進(jìn)步,作為高性能的光電圖像傳感器以其優(yōu)良的性能廣泛應(yīng)用于遙感成像、高精測量、景物鑒別、圖文傳真和工業(yè)檢測控制等領(lǐng)域。本文提出了一種實(shí)時(shí)圖像采集和處理系統(tǒng)的設(shè)計(jì)方法,該系統(tǒng)以TMS320DM642[1-2]為核心,結(jié)合視頻解碼芯片SAA7115H和OSD FPGA構(gòu)成實(shí)時(shí)圖像采集和處理系統(tǒng)電路。
CCD,英文全稱:Charge-coupled Device,中文全稱:電荷耦合元件。可以稱為CCD圖像傳感器。CCD是一種半導(dǎo)體器件,能夠把光學(xué)影像轉(zhuǎn)化為數(shù)字信號。 CCD上植入的微小光敏物質(zhì)稱作像素(Pixel)。一塊CCD上包含的像素?cái)?shù)越多,其提供的畫面分辨率也就越高。CCD的作用就像膠片一樣,但它是把圖像像素轉(zhuǎn)換成數(shù)字信號。CCD上有許多排列整齊的電容,能感應(yīng)光線,并將影像轉(zhuǎn)變成數(shù)字信號。經(jīng)由外部電路的控制,每個(gè)小電容能將其所帶的電荷轉(zhuǎn)給它相鄰的電容。
1 系統(tǒng)總體設(shè)計(jì)
1.1 系統(tǒng)結(jié)構(gòu)
本系統(tǒng)以TMS320DM642為核心,采用模塊化設(shè)計(jì)思想,整個(gè)系統(tǒng)主要由視頻解碼芯片(A/D轉(zhuǎn)換芯片)、可編程邏輯門陣列(OSD FPGA)、TMS320DM642及外圍電路組成。外圍電路主要包括CCD攝像機(jī)、SDRAM圖像存儲器、FLASH程序存儲器及TMS320DM642外圍電路(復(fù)位、電源連接等)。圖1為該系統(tǒng)的結(jié)構(gòu)框圖。
1.2 系統(tǒng)工作原理
由CCD攝像頭攝入的PAL制圖像傳送到SAA7115解碼器,SAA7115解碼?E5%r?99?將信號轉(zhuǎn)變成并行的BT.656圖像碼流送至TMS320DM642視頻口VP0,TMS320DM642將其再解碼,得到Y(jié)UV(4:2:2)格式的圖像,并通過EDMA傳輸?shù)絼討B(tài)存貯器(SDRAM)中存儲,圖像大小為每場720×288(寬×高),每幀720×576(寬×高)。CPU通過訪問SDRAM中的圖像數(shù)據(jù),依照相應(yīng)的程序進(jìn)行相應(yīng)的圖像處理。
在實(shí)時(shí)圖像處理系統(tǒng)中,為了不影響數(shù)據(jù)處理速度,需要在恒速的CCD圖像采集與變速的TMS320DM642圖像處理之間加入緩沖電路,緩沖采用TMS320DM642視頻口的片內(nèi)FIFO和片外SDRAM的乒乓緩存結(jié)構(gòu)。"乒乓操作"是一個(gè)經(jīng)常應(yīng)用于數(shù)據(jù)流控制的處理方法,如圖2所示,其處理流程為:輸入數(shù)據(jù)流通過指針等時(shí)地將數(shù)據(jù)流分配到數(shù)據(jù)緩沖區(qū)1、2和3中,在第1幀的時(shí)間,將輸入的數(shù)據(jù)流緩存到1;第2幀將輸入的數(shù)據(jù)流緩存到2,與此同時(shí),將1的數(shù)據(jù)作運(yùn)算處理。在下個(gè)緩沖周期,再次切換,將輸入的數(shù)據(jù)流緩存到3,與此同時(shí),將2的數(shù)據(jù)運(yùn)算處理。如此循環(huán),A、B、C、D、E為其5種狀態(tài)。
乒乓操作的最大特點(diǎn)是按節(jié)拍、相互配合地切換,將經(jīng)過緩沖的數(shù)據(jù)流不停頓地進(jìn)行運(yùn)算及處理。把乒乓操作模塊當(dāng)作一個(gè)整體,此模塊兩端的輸入數(shù)據(jù)流與輸出數(shù)據(jù)流均是連續(xù)不斷的,沒有任何停頓,因此非常適合進(jìn)行流水線式處理,完成數(shù)據(jù)的無縫緩沖與處理。
2 功能模塊設(shè)計(jì)
2.1 視頻采集模塊
本系統(tǒng)采用Philips公司的SAA7115視頻解碼芯片將CCD模擬視頻進(jìn)行數(shù)字化,然后傳給TMS320DM642的視頻端口進(jìn)行處理,同時(shí)分離水平同步(XRH)和垂直同步(XRV)等信號。
視頻解碼芯片采用SAA7115,省去時(shí)鐘同步電路的設(shè)計(jì),簡化接口電路,提高系統(tǒng)的可靠性。由攝像機(jī)采集到的模擬信號經(jīng)過視頻端子進(jìn)入到解碼器SAA7115的模擬端Al11,經(jīng)模擬處理和A/D轉(zhuǎn)換后產(chǎn)生數(shù)字色度信號和亮度信號,分別對其進(jìn)行處理。亮度信號處理的結(jié)果一路送到信號處理器,進(jìn)行綜合處理,產(chǎn)生Y和UV信號,經(jīng)格式化后采用4:2:2 YUV格式從IPD[7-0]輸出直接連接到TMS320DM642視頻口的VP0[9-2]管腳;另一路經(jīng)過同步分離器,由數(shù)字PLL產(chǎn)生相應(yīng)的同步信號與TMS320DM642的VP0CTL0和VP0CTL1相連,同時(shí)PLL驅(qū)動時(shí)鐘發(fā)生器,產(chǎn)生27 MHz的時(shí)鐘同步信號LLC,輸出到TMS320DM642的VP0CLK0管腳。解碼器SAA7115與TMS320DM642的視頻接口的原理如圖3所示。
所有這些功能均在I2C總線控制下完成。SCL作為I2C接口的時(shí)鐘線與TMS320DM642的SCL相連,SDA作為I2C接口的數(shù)據(jù)地址線與TMS320DM642的SDA相連。通過SCL和SDA的時(shí)序配合,可由TMS320DM642向SAA7115的寄存器寫入數(shù)據(jù)或讀出數(shù)據(jù)。
2.2 TMS320DM642圖像處理模塊
本系統(tǒng)中視頻口VP0作為輸入,與視頻解碼器SAA7115的IPD相連。從解碼器SAA7115出來的BT.656數(shù)據(jù)流進(jìn)入VP0口后,經(jīng)由BT.656捕獲通道,進(jìn)入到視頻口緩沖區(qū)中,每個(gè)視頻口都有1個(gè)5 120 B的視頻輸入/輸出緩沖區(qū),視頻口輸人的數(shù)據(jù)分別進(jìn)入捕獲FIFO A和FIFO B,其中Y緩存2 560 B,Cb和Cr緩存分別為1 280 B.根據(jù)輸出的同步脈沖產(chǎn)生幀存儲器的地址信號、讀寫和片選等控制信號,將圖像逐幀存入SDRAM存儲器中,通過中斷通知TMS320DM642讀取。TMS320DM642通過EDMA事件實(shí)現(xiàn)視頻口緩沖區(qū)和片內(nèi)L2存儲器之間的數(shù)據(jù)傳遞。用戶編程設(shè)定1個(gè)緩沖區(qū)閾值用以產(chǎn)生EDMA事件。BT.656格式的數(shù)據(jù)流經(jīng)由捕獲通道分別進(jìn)入各自的緩沖區(qū),并打包成64 B的雙字。當(dāng)雙字增至緩沖區(qū)閾值時(shí)觸發(fā)EDMA事件,存儲器映射寄存器即作為EDMA數(shù)據(jù)傳輸?shù)脑吹刂贰楸WC每一場的數(shù)據(jù)能夠全部傳完且沒有遺漏,每次EDMA傳輸?shù)臄?shù)據(jù)大小應(yīng)等于閾值。由于TMS320DM642的強(qiáng)大處理能力,用戶算法作為任務(wù)線程嵌入TMS320DM642軟件系統(tǒng)中。
2.3 外圍存儲模塊
本系統(tǒng)的TMS320DM642在視頻圖像的處理時(shí),處理過程中會產(chǎn)生大量數(shù)據(jù),而其內(nèi)部最多僅有256 KB的RAM,所以需要擴(kuò)展大容量的外部存儲器才能滿足數(shù)據(jù)處理的需要。本系統(tǒng)選用2片SDRAM用于存儲程序、數(shù)據(jù)和緩存數(shù)字視頻信息,選用1片F(xiàn)LASH存儲器用于固化程序和一些掉電后仍需保存的用戶數(shù)據(jù)。SDRAM芯片和FLASH芯片均通過TMS320DM642的EMIF口實(shí)現(xiàn)無縫連接[3].TMS320DM642的EMIF有4個(gè)獨(dú)立的可設(shè)定地址的區(qū)域,稱為芯片使能空間(CE0~CE3),當(dāng)FLASH和FPGA映射到CE1時(shí),SDRAM占據(jù)CE0,CE3的一部分被配置給OSD功能的同步操作和擴(kuò)展的FPGA中的其他同步寄存器操作。本系統(tǒng)合并形成了一個(gè)64 bit長的外部存儲器端口,將地址空間分割成了4個(gè)芯片使能區(qū),允許對地址空間進(jìn)行8 bit、16 bit、32 bit和64 bit的同步或不同步的存取,并且使用了芯片使能區(qū)CE0、CE1和CE3.CE0被發(fā)送給64 bit的SDRAM總線,CE1被8 bit的FLASH和FPGA功能使用,CE3被設(shè)置成同步功能。
2.3.1 SDRAM存儲器
SDRAM:Synchronous Dynamic Random Access Memory,同步動態(tài)隨機(jī)存儲器,同步是指 Memory工作需要同步時(shí)鐘,內(nèi)部的命令的發(fā)送與數(shù)據(jù)的傳輸都以它為基準(zhǔn);動態(tài)是指存儲陣列需要不斷的刷新來保證數(shù)據(jù)不丟失;隨機(jī)是指數(shù)據(jù)不是線性依次存儲,而是自由指定地址進(jìn)行數(shù)據(jù)讀寫。
本系統(tǒng)采用MT48LC4M32B2[4]來構(gòu)成SDRAM存儲器,大小為1 M×32 bit×4 banks, 在CE0空間連接了64 bit的SDRAM總線。總線由外部PLL驅(qū)動設(shè)備控制,在133MHz的最佳運(yùn)行狀態(tài)下運(yùn)行,SDRAM的刷新由TMS320DM642自動控制。TMS320DM642的EMIF與SDRAM接口圖如圖4所示。
2.3.2 FLASH存儲器
FLASH閃存 閃存的英文名稱是"Flash Memory",一般簡稱為"Flash",它屬于內(nèi)存器件的一種。 不過閃存的物理特性與常見的內(nèi)存有根本性的差異: 目前各類 DDR 、 SDRAM 或者 RDRAM 都屬于揮發(fā)性內(nèi)存,只要停止電流供應(yīng)內(nèi)存中的數(shù)據(jù)便無法保持,因此每次電腦開機(jī)都需要把數(shù)據(jù)重新載入內(nèi)存。
本系統(tǒng)擴(kuò)展4 M的FLASH,映射在CE1空間的低位。FLASH寄存器選用4 M×8 bit的AM29LV033C.FLASH寄存器主要用來導(dǎo)入裝載和存儲FPGA的配置信息。CE1空間被配置成8 bit,FLASH寄存器也是8bit.由于CE1的可利用地址空間小于FLASH的空間,所以利用FPGA可產(chǎn)生3個(gè)擴(kuò)展頁。這些擴(kuò)展的線形地址通過FPGA的FLASH基礎(chǔ)寄存器進(jìn)行定義,復(fù)位后的默認(rèn)值是000.TMS320DM642的EMIF和FLASH的接口圖如圖5所示。
2.4 OSD FPGA模塊
OSD是on-screen display的簡稱,即屏幕菜單式調(diào)節(jié)方式。一般是按Menu鍵后屏幕彈出的顯示器各項(xiàng)調(diào)節(jié)項(xiàng)目信息的矩形菜單,可通過該菜單對顯示器各項(xiàng)工作指標(biāo)包括色彩、模式、幾何形狀等進(jìn)行調(diào)整,從而達(dá)到最佳的使用狀態(tài)。它通過顯示在屏幕上的功能菜單達(dá)到調(diào)整各項(xiàng)參數(shù)的目的,不但調(diào)整方便,而且調(diào)整的內(nèi)容也比以上的兩種方式多,增加了失真、會聚、色溫、消磁等高級調(diào)整內(nèi)容。像以前顯示器出現(xiàn)的網(wǎng)紋干擾、屏幕視窗不正、磁化等需要送維修廠商維修的故障,現(xiàn)在舉手之間便可解決。
FPGA負(fù)責(zé)完成所有芯片的接口和控制,其中包括SAA7115與I2C總線的接口、復(fù)位控制信號以及與TMS320DM642的EMIF接口和外設(shè)接口等,其體系結(jié)構(gòu)圖如圖6所示。本系統(tǒng)的OSD FPGA功能模塊的芯片型號為Xilinx XC2S300E-6PQ208C[5],主要用來完成以下工作:
?。?)通過寄存器使用TMS320DM642外部存儲器接口(EMIF);
?。?)通過可編譯寄存器使用TMS320DM642的EMIF接口控制GPIO;
?。?)產(chǎn)生EMIF緩沖控制信號(DIR和OE);
?。?)提供對于PLL1708的連續(xù)控制接口;
?。?)為FLASH產(chǎn)生3頁bit空間;
(6)使用SAA7115的同步信號。
2.5 電源和復(fù)位模塊
該系統(tǒng)通過單+5 V供電,在板子內(nèi)部轉(zhuǎn)換為+1.4 V和+3.3 V,為各器件供電。+3.3 V為TMS320DM642的I/O口、解碼器及其他芯片的電源,+1.4 V為TMS320DM642 CPU內(nèi)核電源。TMS320DM642內(nèi)核電壓+1.4 V,外設(shè)I/O電壓+3.3 V,降低內(nèi)核電壓主要是降低功耗,外部接口引腳采用+3.3 V電壓,便于直接與外部器件接口。由于是2種不同的電壓,所以要考慮供電系統(tǒng)的配合問題。在加電過程中,保證CPU內(nèi)核電源先加電,最晚也應(yīng)當(dāng)與外設(shè)I/O電源同時(shí)加電。關(guān)閉電源時(shí),先關(guān)閉I/O電源,再關(guān)閉內(nèi)核電源。如果內(nèi)核加電晚于I/O,則會發(fā)生內(nèi)部總線競爭,從而產(chǎn)生不可預(yù)定的結(jié)果。因此,選用電源芯片TPS54310[6]獲得上述2種電壓,并利用其電源輸出有效引腳PG和允許電壓輸人引腳EN保證TMS320DM642的內(nèi)核和I/O上電掉電順序。
為防止系統(tǒng)程序進(jìn)入死循環(huán)或因電壓波動而產(chǎn)生異常,本系統(tǒng)用看門狗芯片來控制系統(tǒng)復(fù)位。這里采用TI的TPS3823-33DBVT[7]看門狗芯片,它由+3.3 V電源供電,能對電源電壓進(jìn)行監(jiān)控,當(dāng)電源電壓降至2.93 V以下時(shí)觸發(fā)復(fù)位信號,使整個(gè)系統(tǒng)進(jìn)入復(fù)位狀態(tài),直至電源電壓復(fù)原,復(fù)位信號的最小長度為200 ms.同時(shí),還含有一看門狗計(jì)時(shí)器,用來監(jiān)測來自處理器芯片的跳變沿觸發(fā)信號,如果1.6 s內(nèi)未接收到觸發(fā)信號,它同樣讓系統(tǒng)進(jìn)入復(fù)位狀態(tài)并持續(xù)200 ms,這樣可在系統(tǒng)程序進(jìn)入死循環(huán)后重新啟動系統(tǒng)。TMS320DM642電源與復(fù)位電路的連接圖如圖7所示。
3 抗干擾設(shè)計(jì)
由于高頻脈沖噪聲對本系統(tǒng)危害最大,為了提高系統(tǒng)的抗干擾性能,可采取以下措施:
?。?)優(yōu)化PCB印制板的設(shè)計(jì)。在本系統(tǒng)中應(yīng)當(dāng):
?、俨捎枚潭鴮挼膶?dǎo)線來抑制干擾。時(shí)鐘引線、總線驅(qū)動器的信號線常有大的瞬變電流,其印制導(dǎo)線要盡可能短。對于分立元件電路,印制導(dǎo)線寬度在1.5 mm左右即可滿足要求;對于集成電路,印制導(dǎo)線寬度在0.5 mm~1.0 mm之間選擇;
②傳輸多種電平信號時(shí),盡量把前、后沿時(shí)間相近的電平信號劃為一組傳輸;在雙面印制板的背面布置較大面積的地線區(qū)域,可對部件產(chǎn)生的高頻脈沖噪聲起到吸收和屏蔽的作用;分開模擬和數(shù)字電源層;
?。?)增加總線的抗干擾能力。采用三態(tài)門形式的總線結(jié)構(gòu),并給總線接上拉電阻,使總線在瞬間處于穩(wěn)定的高電平而避免總線出現(xiàn)懸空狀態(tài)。
本文面向?qū)崟r(shí)圖像采集和處理,采用模塊化設(shè)計(jì)思想,以TMS320DM642、SAA7115、OSD FPGA等實(shí)現(xiàn)了視頻圖像采集和處理系統(tǒng)的硬件電路,該系統(tǒng)電路簡單、結(jié)構(gòu)緊湊、調(diào)節(jié)靈活、可靠性高、實(shí)時(shí)性強(qiáng)的特點(diǎn),通過驗(yàn)證,滿足設(shè)計(jì)的應(yīng)用要求,可為今后視頻圖像采集和處理的進(jìn)一步研發(fā)提供參考。